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[1] The NASA Ames general circulation model has been used to compute time series for
atmospheric products of inertia and relative angular momentum terms. Model outputs
were used also to compute time series representing the inertia terms due to CO2

condensation and sublimation on the surface of Mars. Some of these terms were used to
generate time series representing the forcing functions for the equatorial components of
the linearized Liouville equations of rotational motion. These equations were then
solved numerically for a period of a Martian year (669 sols) to obtain a time series for the
position of the rotation pole on the surface of Mars. The results of the investigation
indicate that mass variation in the atmosphere is as important as the formation and
sublimation of ice caps on the surface of the planet. Numerical integration of the equations
of rotational motion yields pole displacements as large as 30.9 cm (ice caps solution),
39.5 cm (atmospheric effects), or 33 cm (both effects combined). Fourier analysis of the
time series corresponding to the equatorial components of pole displacement for the ice
caps solution as well as the atmospheric effects solution shows that the (1/3)-annual
harmonic has the largest coefficient in three cases, with magnitudes in the 7–9 cm range.
Fourier analysis of the equatorial components of polar motion for the combined solution
yields main harmonics of 5.12 cm (x), (1/3)-annual and 7.50 cm (y), annual. INDEX
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1. Introduction

[2] The rotational variations of a planet can be analyzed
into axial and equatorial components. The axial variations
(along the z axis, which is the rotation axis) are reflected in
changes in the length of day (LOD). The equatorial varia-
tions (x, y) produce changes in the orientation of the axis of
rotation (polar motion). The solution of Liouville’s equa-
tions provides the changes in planetary rotation, i.e.,
changes in LOD and polar motion, as discussed by Lambeck
[1980].
[3] The methodology of planetary rotational investiga-

tions can follow the angular momentum approach or the
torque approach. The chosen methodology determines the
boundaries of the appropriate control volume. The angular
momentum method involves the computation of terms con-
taining the products of inertia of the atmosphere (‘‘mass
terms’’) and their time derivatives, as well as relative angular
momentum terms (‘‘motion terms’’) and their derivatives.
[4] The objective of this investigation is to use the

angular momentum methodology to compute and analyze

how the atmosphere affects Mars’ polar motion, based on
outputs from the NASA Ames General Circulation Model
(GCM). The model provides values of wind velocity,
density and pressure, which serve as inputs to the calcula-
tion of the terms which appear in Liouville’s equations of
rotational motion.
[5] The torque approach was used in a previous investi-

gation by Sanchez et al. [2003], referred below as Paper I, to
compute polar motion and LOD variations. The LOD
variations were computed also using the angular momentum
methodology. Mars’ solid body was modeled as rigid, with
the Love number k2 = 0. The polar motion effects produced
by the ice caps products of inertia were not computed since
the necessary data was not available then.
[6] The studies of atmospheric effects on the rotation of

Mars constitute a growing body of scientific literature.
Paper I provides a number of references. Many of these
works were concerned only with seasonal variations in the
rotation rate (LOD). Those which computed polar motion
variations are discussed in a section below.
[7] The model used here for the body of Mars does not

include a liquid core or a solid inner core; therefore
associated near-diurnal and other possible resonances are
excluded. We hope to study them in a future work. Mars’
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solid body is considered as elastic with a value of the Love
number k2 = 0.153, as determined by Yoder et al. [2003]
from analysis of Mars Global Surveyor radio tracking.
[8] The paper presents the results of Fourier analysis of

time series representing various quantities. For each pair of
terms, ak coskt + bk sinkt = (ak

2 + bk
2)1/2 cos(kt-j), we refer to

the quantity (ak
2 + bk

2)1/2 as the ‘‘power at frequency k’’. A
plot of this quantity as a function of k is called the power
spectrum, as shown by Hamming [1986, p. 515]. Note that
this convention makes the units of power the same as those of
the particular time series under consideration, i.e., if the time
series refers to displacement in cm, then the units of power
are cm also. When reference is made to ‘‘total power’’, it is
meant the sum over the entire frequency range. Excitation or
forcing function magnitudes are given in Hadley units. One
Hadley (H) is equal to 1018 Newton-meters.
[9] The structure of the paper is as follows. The Liouville

equations of rotational motion are introduced in section 2.
Time series and analysis of the equatorial excitation func-
tions are treated in section 3. The computation of polar
motion constitutes the subject of section 4. Section 5
presents a comparison of the results using the torque
approach and the angular momentum approach. A compar-
ison of the results with previous investigations is the subject
of section 6. Summary and conclusions appear in section 7.

2. Liouville Equations

[10] Liouville gave the basic equations of motion in 1858.
A linearized form of the equatorial components is given by
Munk and MacDonald [1975]:

A wxð Þ0þ C� Bð ÞWwy ¼ � hx � W Ixzð Þ0þW hy � W Iyz
� �

þ Lx

B wy

� �0� C� Að ÞWwx ¼ � hy � W Iyz
� �0�W hx � W Ixzð Þ þ Ly;

ð1Þ

where A and B are the equatorial moments of inertia, C is
the polar moment of inertia, Iyz and Ixz are the products of
inertia, hx and hy are the relative angular momentum terms.
W is the mean angular speed of rotation, wx and wy are the
equatorial components of angular velocity. Lx and Ly are the
equatorial components of external torque. The primes
denote derivatives with respect to time.
[11] The time-varying parts of the products of inertia can

be separated into three components: (1) a part due to the
rotational deformation of the solid body of the planet, (2) a
part due to the CO2 and H2O ices condensing and subli-
mating on the surface of the planet, and (3) a part due to the
mass redistribution of the atmosphere. The expressions for
the products of inertia can then be written as follows:

Iyz ¼ � k2 R
5 W= 3Gð Þ

� �
wy þ 1þ kl2

� �
D Iyz
� �

a
þ D Iyz

� �
s

h i

Ixz ¼ � k2 R
5 W= 3Gð Þ

� �
wx þ 1þ kl2

� �
D Ixzð Þa þ D Ixzð Þs

� �
:

ð2Þ

[12] The first term in equation (2) is the rotational
deformation part [Munk and MacDonald, 1975]. The sec-
ond term denotes the atmospheric part. The contribution due
to surface ice is indicated by the third term, k2 is the second-
degree tidal effective Love number, k2

l is the second-degree

loading Love number, R is the radius of the planet, and G is
the gravitational constant.
[13] Substituting equation (2) into equation (1) and solv-

ing for wx and wy yields

Y0 � NY ¼ Fa þ Fs þ L ð3Þ

Y ¼ c1 wx; c2 wy

� �T ð4Þ

N ¼ matrix

0 �d1

d2 0

ð5Þ

Fa ¼ Fax;Fay
� �T ð6Þ

Fax ¼ 1þ kl2
� �

WDI0xz � W2 DIyz
� �

a
þ W hy � h0x

Fay ¼ 1þ kl2
� �

WDI0yz þ W2 DIxz

h i
a
� W hx � h0y

ð7Þ

Fs ¼ Fsx;Fsy
� �T ð8Þ

Fsx ¼ 1þ kl2
� �

WDI0xz � W2 DIyz
� �

s

Fsy ¼ 1þ kl2
� �

WDI0yz þ W2 DIxz

h i
s

ð9Þ

L ¼ Lx;Ly

� �T ð10Þ

c1 ¼ Aþ k2 R
5 W2= 3Gð Þ ð11Þ

c2 ¼ Bþ k2 R
5 W2= 3Gð Þ ð12Þ

d1 ¼ W C� Bð Þ � k2 R
5 W2= 3Gð Þ

� �
ð13Þ

d2 ¼ W C� Að Þ � k2 R
5 W2= 3Gð Þ

� �
; ð14Þ

where the superscript ‘‘T’’ denotes transposed.
[14] The solution of equation (3) provides the trajectory

of the point of intersection of the axis of rotation with the
surface of the planet by the well-known relations

x ¼ wx=Wð ÞR

y ¼ wy=W
� �

R:
ð15Þ

[15] The value of the polar moment of inertia C used in
the calculations was obtained from

C ¼ 0:366MR2; ð16Þ
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where M = 6.4185 � 1023 kg and R = 3389920 m [Sohl and
Spohn, 1997] and W = 0.7088 � 10�4 sec�1. The values of
the equatorial moments of inertia A and B follow from the
values of the gravitational coefficients C20 and C22 and the
value of C:

A ¼ MR2 C20 þ 0:366� 2:C22ð Þ ð17Þ

B ¼ MR2 C20 þ 0:366þ 2:C22ð Þ: ð18Þ

The values for the gravitational coefficients are those given
by Lemoine et al. [2001].
[16] By setting the forcing functions equal to zero in

equation (3), the eigenvalues of matrix N yield the associ-
ated Martian Chandler period:

P ¼ 2p= d1 d2ð Þ= c1 c2ð Þ½ 	1=2: ð19Þ

[17] Letting A = 2.68594 (1036) kg-m2, B = 2.68433
(1036) kg-m2, C = 2.69956 (1036) kg-m2, and k2 = 0.153
[Yoder et al., 2003], the following values for the Martian
Chandler period are obtained, as shown in Table 1.
[18] It is seen that triaxiality, with B < A, decreases the

Chandler period by 10 days for a rigid Mars. For an elastic
Mars, the reduction is 14 days. Elasticity increases the
Chandler period: 29 days for a rotationally symmetric Mars,
and 25 days for a triaxial Mars.

3. Excitation Functions

[19] General circulation models are widely used in the
forecasting of weather and climate as well as in meteoro-
logical research. Given a set of initial conditions for
temperature, pressure, wind fields, etc., the model uses the
appropriate equations from fluid dynamics and radiative
transfer theory to compute the evolution of the dynamical
system by numerical integration both in time and space. The
main energy source for the atmospheric motions is radiative
transfer of solar energy, which is a function of Mars’ orbital
and rotational motions. Absorption, emission, and scattering
of radiation by CO2 and suspended dust is also included in
the models.
[20] The NASA Ames GCM used here is one of the most

sophisticated general circulation models for Mars. Very
detailed descriptions can be found in the literature [e.g.,
Pollack et al., 1990]. The description provided here is brief
and not intended to exhaustively repeat material already
covered in the available references.
[21] The NASA Ames GCM is a finite difference model

based on the primitive equations of meteorology expressed

in spherical sigma coordinates. The resolution is 7.5�
(latitudinal) by 9� (longitudinal). The version of the model
used here has 30 vertical layers extending from the surface
to 100 km. The output files are written every 1.5 hours of
simulated time, 16 times per sol. There are 10704 records in
the data file, representing a time span of 669 sols (687 Earth
days) which is the length of the Martian year.
[22] Kinetic energy is dissipated in the model by frictional

interaction with the surface and a ‘‘sponge’’ layer at the
model top. Surface friction is parameterized using an
adaptation of the bulk boundary layer scheme of Deardorff
[1972]. The sponge layer exists in the top three layers and is
based on a simple Rayleigh friction scheme.
[23] The model allows for the condensation of CO2 in the

atmosphere as well as on the surface. The surface topogra-
phy adopted in the model used in this investigation is based
on a 1� � 1� MOLA topographic surface. An averaging and
weighting procedure is used to create the final 7.5� � 9�
data set.
[24] The outputs from the NASA Ames GCM provide

a 1.5 hour sampling rate; therefore the results for the
forcing functions are not limited to annual and semi-annual
components.
[25] The condensation and sublimation of CO2 on the

surface and in the atmosphere of Mars produce changes in
the atmospheric mass distribution as well as changes in the
polar caps. From the standpoint or rotational dynamics these
changes are manifested in time variations in the moments
and products of inertia. Another source of rotational varia-
tions is due to the atmospheric winds, which contribute to
the relative angular momentum terms.
[26] Figure 1 exhibits the time series for mass variation in

the atmosphere and the ice caps. Note that they are negatives
of each other, which indicates mass conservation is satisfied.
The atmospheric variation occurs with respect to a mean
value of 236 (1014) kg, the ice mass variation has a mean of
35 (1014) kg. Total power is 39 (1014) kg for each series.
The main harmonics are annual, semiannual, (1/3)-annual,
and (1/4)-annual.
[27] The products of inertia variations appearing in equa-

tion (2) and the relative angular momentum terms are
computed from the following expressions:

DIxzð Þa¼
Z
V

ra r
2 sinf cosf cosl dV ð20Þ

DIyz
� �

a
¼

Z
V

ra r
2 sinf cosf sinl dV ð21Þ

DIxzð Þs¼
Z
V

rs r
2 sinf cosf cosl dV ð22Þ

DIyz
� �

s
¼

Z
V

rs r
2 sinf cosf sinl dV ð23Þ

hx ¼
Z
V

ra r v sinl� u sinf coslð ÞdV ð24Þ

hy ¼
Z
V

ra r �v cosl� u sinf sinlð ÞdV; ð25Þ

Table 1. Chandler Period as a Function of Triaxiality and

Elasticitya

Moments of Inertia k2 Chandler Period

A, A, C 0. 196.8
A, B, C 0. 186.1
A, A, C 0.153 225.4
A, B, C 0.153 211.6

aA = 2.68594 (1036) kg-m2, B = 2.68433 (1036) kg-m2, C = 2.69956
(1036) kg-m2. Chandler period in sols.
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where ra is the atmospheric density, rs is the ice density, r is
the distance from the center of planet, f is latitude, l is east
longitude, u is the eastward velocity component, v is the
northward velocity component, and V stands for the volume
of the atmosphere. The products of inertia variations
appearing in equations (20)–(23) are computed from mass
variations in the atmosphere or on the ice caps. The NASA/
Ames GCM supplies inputs for both.
[28] The linearized Liouville equations, in the form of

equation (3), show forcing functions on the right side due to
atmospheric wind and mass changes and to ice formation
and sublimation. If the angular momentum approach is
taken, these forcing functions will drive the forced solution
and no torque due to the atmosphere will appear in the
control volume. Equations (7) and (9) give the atmospheric
and ice contributions respectively.
[29] Some of the terms appearing in the forcing functions

are associated with a redistribution of mass over the Earth’
surface, the effects of loading and self-attraction have to be
considered. This is done by means of the loading Love
number k2

l . The value of k2
l is weakly dependent on

frequency [Defraigne et al., 2000]; here an average value
of k2

l = �0.06 is adopted for the computations.

[30] Figures 2 and 3 present the time series and power
spectra for the equatorial components of the atmospheric
forcing functions. Figures 4 and 5 portray the results for the
ice caps excitation functions. Tabulated results based on
power spectrum analysis are given in Table 2. Note that the
main harmonics for the ice caps excitation functions are
all long periodic: annual, semiannual, (1/3)-annual, etc. The
excitation functions based on atmospheric effects
exhibit daily and sub-daily harmonics among the five most
powerful. Figures 6 and 7 show time series and power
spectra for the equatorial components corresponding to
the sum of ice caps and atmospheric forcing. Tabulated
results appear in Table 3. As expected, annual, semiannual,
(1/3)-annual, daily and sub-daily harmonics rank among the
most powerful.
[31] The forcing function frequencies appearing in Tables 2

and 3 do not have the same order in the power ranking. These
differences must be the result of asymmetries in surface
topography [Van den Acker et al., 2002]. The complex
interactions of the atmosphere with the topography can
produce a rich spectrum of responses [Read and Lewis,
2004].

Figure 1. Mass variation time series. (a) Atmosphere.
(b) Ice caps.

Figure 2. Atmospheric variation forcing function: X
component. Amplitude in Hadleys. One Hadley is equal
to 1018 Newton-meters. (a) Time series. (b) Power
spectrum.
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[32] The long period harmonics are associated with sea-
sonal effects, involving the revolution of Mars around the
Sun and the inclination of its rotation axis with respect to
the plane of the orbit. Mars’ obliquity and the eccentricity of
its orbit are greater than those of Earth, resulting in very
pronounced seasons and large variations in the atmosphere,
including the CO2 condensation and sublimation cycle.
[33] Daily and sub-daily periods are associated with the

daily rotational motion. Mars’ strong daily cycle is due to
the low thermal inertia of the atmosphere and the strong
solar heating during the day [Read and Lewis, 2004], with
day-night temperature differences reaching 100K. The sur-
face also has a low thermal capacity due to the absence of
oceans, cooling rapidly as night falls, as in desert landscapes
on Earth.
[34] The magnitude = (x2 + y2)1/2, of forcing due to ice

caps condensation and sublimation reaches its maximum
(2.22 H) at the end of the northern hemisphere summer
(320 sols). This is approximately the time when total mass
variations reach a maximum in the ice caps and in the
atmosphere (313 sols). The forcing magnitude associated
with atmospheric effects reaches its maximum (6.92 H) at
the very end of the fall (505 sols), coincident with the
maximum variation in atmospheric products of inertia: DIxz

(505 sols) and DIyz (507 sols). The combined effect (ice
plus atmosphere) reaches a maximum of 6.92 H at 505 sols.

4. Computation of Polar Motion

[35] The trajectory of the point of intersection of the
rotation axis with the surface of Mars is obtained from
equation (15), which requires the solution of equation (3).
[36] Klein and Sommerfeld [1914] have given the fol-

lowing general solution to equation (1) for the biaxial case
(A = B):

wx ¼ g1 cos nt� g2 sin ntþ F bþ G b0ð Þ cos ft
� F h� G h0ð Þ sin ft ð26Þ

wy ¼ g2 cos ntþ g1 sin ntþ F b� G b0ð Þ sin ft

þ F hþ G h0ð Þ cos ft ð27Þ

F ¼ f þ Wð Þ= A f � nð Þ½ 	 ð28Þ

G ¼ f � Wð Þ= A f þ nð Þ½ 	; ð29Þ

where g1, g2, b, h, b
0, and h0 are real constants, n is the

natural or resonance (Chandler) frequency of the system,

Figure 3. Atmospheric variation forcing function. Y
component. (a) Time series. (b) Power spectrum.

Figure 4. Ice caps variation forcing function: X compo-
nent. (a) Time series. (b) Power spectrum.
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and f is the forcing frequency. As before, W is the mean
angular speed of rotation. Note that if the forcing frequency
is close to the Chandler frequency resonance might occur.
Note also that if the forcing frequency is close to the mean
angular speed, the magnitude of the forced response could

decrease accordingly. A similar behavior can be expected
for the triaxial case, when A 6¼ B.
[37] In this investigation the solution for the triaxial case is

obtained by means of a numerical integration package using

Figure 5. Ice caps variation forcing function: Y compo-
nent. (a) Time series. (b) Power spectrum.

Figure 6. Atmospheric variation plus ice caps variation
forcing function: X component. (a) Time series. (b) Power
spectrum.

Table 2. Main Harmonics of Forcing Functions and Equatorial Polar Motion Displacements Due to Ice Caps and

Atmospheric Variationsa

Ice Caps Variations Atmospheric Variations

Forcing Function Pole Displacement Forcing Function Pole Displacement

Frequency Amplitude Frequency Amplitude Frequency Amplitude Frequency Amplitude

X Component
1 0.66 3 8.99 1 1.74 3 7.88
2 0.39 1 4.09 669 0.56 1 4.28
3 0.14 2 2.15 668 0.20 2 3.90
5 0.07 4 2.00 670 0.19 4 2.55
4 0.05 5 1.56 3 0.18 5 0.95

Y Component
1 0.69 3 8.51 1 0.54 1 9.40
2 0.14 2 4.06 669 0.48 3 6.81
3 0.07 1 2.99 2 0.25 4 2.78
5 0.04 4 1.53 671 0.16 2 2.24
6 0.03 5 1.06 667 0.15 5 1.26

aFrequency in cycles per year. Amplitudes of forcing functions in Hadleys. Amplitudes of polar motion displacements in cm.
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the Runge-Kutta-Fehlberg (4,5) method with step size
control [Fehlberg, 1969]. The solution thus obtained
encompasses the response to all the frequencies present in
the forcing function. Analysis of the resulting time series by
fast Fourier transform methods yields the power content for
each frequency. The main objective of the investigation is to
determine and compare the effects due to variations in the
atmosphere and in the ice caps. In addition, the dynamical
system is linear, so that without loss of generality we can
choose the initial conditions such that the pole of rotation is
initially at the origin, wx = wy = 0. Furthermore the objective
of the investigation does not extend to a comparison with
real data, which is not presently available.
[38] Equation (3) was solved separately for effects due to

ice condensation and sublimation on the surface of the
planet and for effects due to mass redistribution in the
atmosphere. The total effect is obtained by addition, due to
the linearity of the equations.
[39] Table 2 presents Fourier analysis results for the time

series corresponding to the equatorial components of pole
displacement for the ice caps solution as well as the
atmospheric effects solution. The (1/3)-annual harmonic
has the largest coefficient in three cases, with magnitudes
in the 7–9 cm range. The coefficients of the main harmon-

ics are of similar magnitude for the ice caps and for the
atmospheric effects.
[40] It is possible to consider the (x, y) components of the

polar displacement as components of a vector characterized
by magnitude = (x2 + y2)1/2 and phase = arctan (y/x). Time
series of magnitude and phase, as well as power spectrum
results for the polar displacement due to atmospheric
variations are shown in Figure 8. Corresponding results
for ice condensation and sublimation appear in Figure 9.
Results for the combination of both are given in Figure 10.
[41] The maximum displacement due to ice is 30.9 cm,

occurring at 548 sols. Atmospheric effects yield a maximum
of 39.5 cm at 478 sols. The combined effect has a maximum
of 33 cm at 616 sols.
[42] The phase angle time series for the solution due to

ice condensation and sublimation indicates a spiral motion
performing three revolutions about the origin over a Martian
year. The solution based on atmospheric mass variations
and the combined solution both portray a spiral motion
performing two revolutions during the Martian year.
[43] Table 3 lists the main harmonics for the x and y

components of the combined solution. Compare with the
main harmonics associated with the forcing functions,
which appear in Table 3 also. Note the (1/3)-annual har-
monic, which is magnified by the proximity of its period
(223 sols) to the natural period of 211 sols. The daily and
sub-daily harmonics appearing in the forcing functions are
not very powerful in the pole displacement spectra.
[44] The solutions discussed thus far have used a loading

Love number k2
l =�0.06, solutions corresponding to the case

k2
l = 0 (no self-attraction and loading effects) have been
obtained also. The latter case yields maximum displacements
of 32.8 cm (ice caps variation solution), 40.9 cm (atmospheric
variation solution) and 35.3 cm (combined solution).
Self-attraction and loading decreases the polar motion dis-
placement by 1.9 cm (ice caps solution), 1.4 cm (atmospheric
variation solution), and 2.3 cm (combined solution).

5. Comparison of the Torque and Angular
Momentum Results

[45] The atmospheric torques acting on the solid body of
Mars were computed in the investigation presented in Paper

Figure 7. Atmospheric variation plus ice caps variation
forcing function: Y component. (a) Time series. (b) Power
spectrum.

Table 3. Main Harmonics of the Excitation Function Due to Ice

and Atmospheric Variations Combined and Associated Pole

Displacementa

Forcing Function Pole Displacement

Frequency Amplitude Frequency Amplitude

X Component
1 1.66 3 5.12
669 0.57 1 3.75
2 0.36 2 3.19
668 0.20 4 2.28
3 0.20 5 1.43

Y Component
1 0.86 1 7.50
669 0.48 3 5.66
2 0.29 2 2.52
671 0.16 4 2.35
667 0.15 5 1.43
aFrequency in cycles per year. Forcing function amplitude in Hadleys.

Pole displacement amplitude in cm.
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I. The associated polar motion was computed for a rigid
Mars (k2 = 0). However, in order to compute the total polar
motion it is necessary to include ice condensation and
sublimation effects on the surface of the planet. To compare
with the results of this investigation the atmospheric torques
computed in Paper I have been used as forcing functions on

the right-hand side of equation (3). To match the conditions
of this investigation Mars’ solid body was considered
elastic with a value of k2 equal to 0.153. The results are
presented in Figure 11. The solution due to ice condensa-
tion and sublimation has been presented above (Figure 9).
The combined solution including atmospheric torques and

Figure 8. Polar motion due to atmospheric variations.
(a) Displacement equals (x2 + y2)1/2. (b) Phase equals arctan
(y/x). (c) Power spectrum.

Figure 9. Polar motion due to ice caps variation.
(a) Displacement equals (x2 + y2)1/2. (b) Phase equals
arctan (y/x). (c) Power spectrum.
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ice caps effects is very similar to the one due to ice caps
alone. The maximum displacement is 32 cm, occurring at
551.5 sols.
[46] The difference between the atmospheric variation/ice

caps solution and the torque/ice caps solution is then equal
to the difference between the atmospheric variation solution

(Figure 8), and the torque solution (Figure 11). Figure 12a
presents the time series corresponding to the magnitude of
the difference. Figure 12b shows the power spectrum
associated with the time series. It is clear that the atmo-
spheric torques are not sufficiently powerful to match the
polar motion solution generated by atmospheric variations.

Figure 10. Polar motion due to atmospheric and ice caps
variations combined. (a) Displacement equals (x2 + y2)1/2.
(b) Phase equals arctan (y/x). (c) Power spectrum.

Figure 11. Polar motion due to atmospheric torques.
(a) Displacement equals (x2 + y2)1/2. (b) Phase equals arctan
(y/x). (c) Power spectrum.

E08005 SANCHEZ ET AL.: ATMOSPHERIC ROTATIONAL EFFECTS ON MARS

9 of 11

E08005



In theory the results from the torque approach and the
results from the angular momentum approach should be
identical. It is possible that the spatial grids used in the
models are not sufficiently fine to achieve the necessary
numerical accuracy conducive to a convergence of results
for the two methodologies.

6. Comparison of Results With Other
Investigations

[47] Polar motion results by other investigators are pre-
sented in Table 4. Due to differences in methodology,
uncertainties in procedures used, lack of available details
in the literature, etc. the comparison should be approached
with caution. An effort has been made to make the com-
parison accurate. When in doubt, no entry was made in the
table. Most of the previous investigations were concerned
with the annual and semiannual harmonics only.
[48] The magnitudes presented in Table 4 for this inves-

tigation are obtained by taking the square root of the sum of
the squares of the coefficients for the x and y components of
polar motion appearing in Tables 2 and 3.

[49] Chao and Rubincam [1990] estimated that a 1� ice
cap offset from the rotation axis would excite polar motion
with an amplitude of 32 cm at the surface. The atmospheric
effect was estimated at 20.8 cm.
[50] Yoder and Standish [1997] estimated the orientation

of the Martian pole of rotation and axial rotation parameters
for January 1, 1980 (midpoint in the Viking epoch). They
used a model for the seasonal mass exchange between the
ice caps and atmosphere to obtain estimates of polar motion
due to asymmetric ice cap changes. These variations range
from 16 to 32 cm at 1, 1/2, and 1/3 year, and 8 cm or less for
1/4 year. The relation between amplitude and period is
associated with resonance effects caused by a wobble period
estimated in the 193–212 day range.
[51] Defraigne et al. [2000] computed Mars’ rotational

variations using the output of a global circulation model for
the Martian atmosphere developed by Forget et al. [1999].
Their polar motion results are 17.3 cm (annual) and 5.2 cm
(semi-annual).
[52] Van den Acker et al. [2002] obtained total amplitudes

of 12 cm on the surface for the annual and 9.7 cm for the
semiannual polar motion excited by the atmosphere and ice
caps. They used a version of the Mars GCM by Forget et al.
[1999].
[53] The differences in polar motion magnitudes as

obtained by the different investigations appear to be within
reasonable limits, considering the probable differences in
atmospheric models used.

7. Summary and Conclusions

[54] The NASA Ames general circulation model has been
used to compute time series for atmospheric products of
inertia and relative angular momentum terms. Model out-
puts were used also to compute time series representing the
inertia terms due to CO2 condensation and sublimation on
the surface of Mars. Some of these terms were used to
generate time series representing the forcing functions for
the equatorial components of the linearized Liouville equa-
tions of rotational motion. These equations were then solved
numerically to obtain a time series for the position of the
rotation pole on the surface of Mars.

Figure 12. Difference between polar motion due to atmo-
spheric variations (a.v.) and polar motion due to atmospheric
torques (t.). (a) [(x2 + y2)1/2]a.v. � [(x2 + y2)1/2]t. (b) Power
spectrum.

Table 4. Polar Motion Results From Various Investigationsa

Investigation

Polar Motion, cycles per year

Ice Caps Atmosphere

Ice Caps and
Atmosphere
Combined

Chao and Rubincam
[1990]

32 (1, 1/2)b 20.8 (1, 1/2)

Yoder and Standish
[1997]

16–32 (1, 1/2, 1/3)
8 (1/4)

Defraigne et al. [2000] 17.3 (1)
5.2 (1/2)

Van den Acker et
al. [2002]

6.1 (1) 12.0 (1)
4.4 (1/2) 9.7 (1/2)

This investigation 5.1 (1) 10.3 (1) 8.4 (1)
4.6 (1/2) 4.5 (1/2) 4.1 (1/2)
12.4 (1/3) 10.4 (1/3) 7.6 (1/3)
2.5 (1/4) 3.8 (1/4) 3.3 (1/4)
1.9 (1/5) 1.6 (1/5) 2.0 (1/5)

aPolar motion in cm.
bAssumes a 1� ice cap offset.
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[55] The annual, semiannual and (1/3)-annual harmonics
appear among the five most powerful in the equatorial
power spectra for both the ice caps and atmospheric effects,
daily and sub-daily harmonics are also prominent in the
atmospheric forcing but not in the ice caps forcing.
[56] The results of the investigation indicate that mass

variation in the atmosphere is as important as the formation
and sublimation of ice caps on the surface of the planet.
Numerical integration of the equations of rotational motion
yields pole displacements as large as 30.9 cm (ice caps
solution), 39.5 cm (atmospheric effects), or 33 cm (both
effects combined). Fourier analysis of the equatorial com-
ponents of polar motion for the combined solution yields
main harmonics of 5.12 cm (x), (1/3)-annual and 7.50 cm
(y), annual.
[57] The effects of self-attraction and loading were deter-

mined to be of the order of 2–3 cm for a value of the
loading Love number k2

l = �0.06.
[58] The Mars’ model used in the investigation corre-

sponds to a triaxial, elastic solid body without a fluid core.
For the adopted parameter values, the associated natural or
Chandler period is 211.6 sols. When forced by ice caps and
atmospheric variations the response of the model is a
function of the separation between the forcing frequency
and the natural frequency (as shown by equations (26)–
(29)). Consequently, the response to the (1/3)-annual
harmonic of the forcing is magnified in the spectra
corresponding to the equatorial components of polar mo-
tion. The response to the daily and quasi-daily harmonics of
forcing is decreased in magnitude, as shown by equations
(26)–(29) also. However, if an ellipsoidal fluid core were
incorporated in the Mars’ model, a near-diurnal natural
frequency would appear which might magnify the response
to the daily and sub-daily harmonics present in the forcing
functions. Additional resonances might appear if a solid
inner core is introduced in the model [Dehant et al., 2003],
including a quasi-diurnal free inner core nutation and an
inner core wobble with a period longer than the Chandler
wobble.
[59] The torque approach was used as well to compute

polar motion. The polar motion displacements thus obtained
were not congruent with the polar motion displacements
obtained using the angular momentum approach. Discrep-
ancies between the two approaches have previously appeared
in investigations concerned with atmospheric effects on the
rotation of the Earth and Mars. Some authors have expressed
their preference for the angular momentum approach [e.g.,
Defraigne et al., 2000]. At the present time the quantity and
quality of Mars’ rotational data is not sufficient to ascertain
which methodology is producing more realistic results.
However, the amplitudes of the main harmonics as obtained
in this investigation are certainly within the range of detection
of future geodetic missions to Mars, such as the planned and
postponed NetLander Ionospheric and Geodesic Experiment
(NEIGE).

[60] Future investigations will benefit from the refine-
ment of the atmospheric models to be expected as more and
better data becomes available, as well as from more realistic
models of Mars’ inner structure.
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